Cyclic sieving

In combinatorial mathematics, cyclic sieving is a phenomenon by which evaluating a generating function for a finite set at roots of unity counts symmetry classes of objects acted on by a cyclic group.[1]

Definition

Let C be a cyclic group generated by an element c of order n. Suppose C acts on a set X. Let X(q) be a polynomial with integer coefficients. Then the triple (XX(q), C) is said to exhibit the cyclic sieving phenomenon (CSP) if for all integers d, the value X(e2πid/n) is the number of elements fixed by cd. In particular X(1) is the cardinality of the set X, and for that reason X(q) is regarded as a generating function for X.

Examples

The q-binomial coefficient

[ n k ] q {\displaystyle \left[{n \atop k}\right]_{q}}

is the polynomial in q defined by

[ n k ] q = i = 1 n ( 1 + q + q 2 + + q i 1 ) ( i = 1 k ( 1 + q + q 2 + + q i 1 ) ) ( i = 1 n k ( 1 + q + q 2 + + q i 1 ) ) . {\displaystyle \left[{n \atop k}\right]_{q}={\frac {\prod _{i=1}^{n}(1+q+q^{2}+\cdots +q^{i-1})}{\left(\prod _{i=1}^{k}(1+q+q^{2}+\cdots +q^{i-1})\right)\cdot \left(\prod _{i=1}^{n-k}(1+q+q^{2}+\cdots +q^{i-1})\right)}}.}

It is easily seen that its value at q = 1 is the usual binomial coefficient ( n k ) {\displaystyle {\binom {n}{k}}} , so it is a generating function for the subsets of {1, 2, ..., n} of size k. These subsets carry a natural action of the cyclic group C of order n which acts by adding 1 to each element of the set, modulo n. For example, when n = 4 and k = 2, the group orbits are

{ 1 , 3 } { 2 , 4 } { 1 , 3 } {\displaystyle \{1,3\}\to \{2,4\}\to \{1,3\}} (of size 2)

and

{ 1 , 2 } { 2 , 3 } { 3 , 4 } { 1 , 4 } { 1 , 2 } {\displaystyle \{1,2\}\to \{2,3\}\to \{3,4\}\to \{1,4\}\to \{1,2\}} (of size 4).

One can show[2] that evaluating the q-binomial coefficient when q is an nth root of unity gives the number of subsets fixed by the corresponding group element.

In the example n = 4 and k = 2, the q-binomial coefficient is

[ 4 2 ] q = 1 + q + 2 q 2 + q 3 + q 4 ; {\displaystyle \left[{4 \atop 2}\right]_{q}=1+q+2q^{2}+q^{3}+q^{4};}

evaluating this polynomial at q = 1 gives 6 (as all six subsets are fixed by the identity element of the group); evaluating it at q = −1 gives 2 (the subsets {1, 3} and {2, 4} are fixed by two applications of the group generator); and evaluating it at q = ±i gives 0 (no subsets are fixed by one or three applications of the group generator).

List of cyclic sieving phenomena

In the Reiner–Stanton–White paper, the following example is given:

Let α be a composition of n, and let W(α) be the set of all words of length n with αi letters equal to i. A descent of a word w is any index j such that w j > w j + 1 {\displaystyle w_{j}>w_{j+1}} . Define the major index maj ( w ) {\displaystyle \operatorname {maj} (w)} on words as the sum of all descents.


The triple ( X n , C n 1 , 1 [ n + 1 ] q [ 2 n n ] q ) {\displaystyle (X_{n},C_{n-1},{\frac {1}{[n+1]_{q}}}\left[{2n \atop n}\right]_{q})} exhibit a cyclic sieving phenomenon, where X n {\displaystyle X_{n}} is the set of non-crossing (1,2)-configurations of [n − 1].[3]


Let λ be a rectangular partition of size n, and let X be the set of standard Young tableaux of shape λ. Let C = Z/nZ act on X via promotion. Then ( X , C , [ n ] ! q ( i , j ) λ [ h i j ] q ) {\displaystyle (X,C,{\frac {[n]!_{q}}{\prod _{(i,j)\in \lambda }[h_{ij}]_{q}}})} exhibit the cyclic sieving phenomenon. Note that the polynomial is a q-analogue of the hook length formula.

Furthermore, let λ be a rectangular partition of size n, and let X be the set of semi-standard Young tableaux of shape λ. Let C = Z/kZ act on X via k-promotion. Then ( X , C , q κ ( λ ) s λ ( 1 , q , q 2 , , q k 1 ) ) {\displaystyle (X,C,q^{-\kappa (\lambda )}s_{\lambda }(1,q,q^{2},\dotsc ,q^{k-1}))} exhibit the cyclic sieving phenomenon. Here, κ ( λ ) = i ( i 1 ) λ i {\displaystyle \kappa (\lambda )=\sum _{i}(i-1)\lambda _{i}} and sλ is the Schur polynomial.[4]


An increasing tableau is a semi-standard Young tableau, where both rows and columns are strictly increasing, and the set of entries is of the form 1 , 2 , , {\displaystyle 1,2,\dotsc ,\ell } for some {\displaystyle \ell } . Let I n c k ( 2 × n ) {\displaystyle Inc_{k}(2\times n)} denote the set of increasing tableau with two rows of length n, and maximal entry 2 n k {\displaystyle 2n-k} . Then ( Inc k ( 2 × n ) , C 2 n k , q n + ( k 2 ) [ n 1 k ] q [ 2 n k n k 1 ] q [ n k ] q ) {\displaystyle (\operatorname {Inc} _{k}(2\times n),C_{2n-k},q^{n+{\binom {k}{2}}}{\frac {\left[{n-1 \atop k}\right]_{q}\left[{2n-k \atop n-k-1}\right]_{q}}{[n-k]_{q}}})} exhibit the cyclic sieving phenomenon, where C 2 n k {\displaystyle C_{2n-k}} act via K-promotion.[5]


Let S λ , j {\displaystyle S_{\lambda ,j}} be the set of permutations of cycle type λ and exactly j exceedances. Let a λ , j ( q ) = σ S λ , j q maj ( σ ) exc ( σ ) {\displaystyle a_{\lambda ,j}(q)=\sum _{\sigma \in S_{\lambda ,j}}q^{\operatorname {maj} (\sigma )-\operatorname {exc} (\sigma )}} , and let C n {\displaystyle C_{n}} act on S λ , j {\displaystyle S_{\lambda ,j}} by conjugation.

Then ( S λ , j , C n , a λ , j ( q ) ) {\displaystyle (S_{\lambda ,j},C_{n},a_{\lambda ,j}(q))} exhibit the cyclic sieving phenomenon.[6]

Notes and references

  1. ^ Reiner, Victor; Stanton, Dennis; White, Dennis (February 2014). "What is... Cyclic Sieving?" (PDF). Notices of the American Mathematical Society. 61 (2): 169–171. doi:10.1090/noti1084.
  2. ^ Reiner, V.; Stanton, D.; White, D. (2004). "The cyclic sieving phenomenon". Journal of Combinatorial Theory, Series A. 108 (1): 17–50. doi:10.1016/j.jcta.2004.04.009.
  3. ^ Thiel, Marko (March 2017). "A new cyclic sieving phenomenon for Catalan objects". Discrete Mathematics. 340 (3): 426–9. arXiv:1601.03999. doi:10.1016/j.disc.2016.09.006. S2CID 207137333.
  4. ^ Rhoades, Brendon (January 2010). "Cyclic sieving, promotion, and representation theory". Journal of Combinatorial Theory, Series A. 117 (1): 38–76. arXiv:1005.2568. doi:10.1016/j.jcta.2009.03.017. S2CID 6294586.
  5. ^ Pechenik, Oliver (July 2014). "Cyclic sieving of increasing tableaux and small Schröder paths". Journal of Combinatorial Theory, Series A. 125: 357–378. arXiv:1209.1355. doi:10.1016/j.jcta.2014.04.002. S2CID 18693328.
  6. ^ Sagan, Bruce; Shareshian, John; Wachs, Michelle L. (January 2011). "Eulerian quasisymmetric functions and cyclic sieving". Advances in Applied Mathematics. 46 (1–4): 536–562. arXiv:0909.3143. doi:10.1016/j.aam.2010.01.013. S2CID 379574.
  • Sagan, Bruce (2011). "The cyclic sieving phenomenon: a survey". In Chapman, Robin (ed.). Surveys in Combinatorics 2011. London Mathematical Society Lecture Note Series. Vol. 392. Cambridge University Press. pp. 183–233. ISBN 978-1-139-50368-6.