Discrete Morse theory

Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces,[1] homology computation,[2][3] denoising,[4] mesh compression,[5] and topological data analysis.[6]

Notation regarding CW complexes

Let X {\displaystyle X} be a CW complex and denote by X {\displaystyle {\mathcal {X}}} its set of cells. Define the incidence function κ : X × X Z {\displaystyle \kappa \colon {\mathcal {X}}\times {\mathcal {X}}\to \mathbb {Z} } in the following way: given two cells σ {\displaystyle \sigma } and τ {\displaystyle \tau } in X {\displaystyle {\mathcal {X}}} , let κ ( σ ,   τ ) {\displaystyle \kappa (\sigma ,~\tau )} be the degree of the attaching map from the boundary of σ {\displaystyle \sigma } to τ {\displaystyle \tau } . The boundary operator is the endomorphism {\displaystyle \partial } of the free abelian group generated by X {\displaystyle {\mathcal {X}}} defined by

( σ ) = τ X κ ( σ , τ ) τ . {\displaystyle \partial (\sigma )=\sum _{\tau \in {\mathcal {X}}}\kappa (\sigma ,\tau )\tau .}

It is a defining property of boundary operators that 0 {\displaystyle \partial \circ \partial \equiv 0} . In more axiomatic definitions[7] one can find the requirement that σ , τ X {\displaystyle \forall \sigma ,\tau ^{\prime }\in {\mathcal {X}}}

τ X κ ( σ , τ ) κ ( τ , τ ) = 0 {\displaystyle \sum _{\tau \in {\mathcal {X}}}\kappa (\sigma ,\tau )\kappa (\tau ,\tau ^{\prime })=0}

which is a consequence of the above definition of the boundary operator and the requirement that 0 {\displaystyle \partial \circ \partial \equiv 0} .

Discrete Morse functions

A real-valued function μ : X R {\displaystyle \mu \colon {\mathcal {X}}\to \mathbb {R} } is a discrete Morse function if it satisfies the following two properties:

  1. For any cell σ X {\displaystyle \sigma \in {\mathcal {X}}} , the number of cells τ X {\displaystyle \tau \in {\mathcal {X}}} in the boundary of σ {\displaystyle \sigma } which satisfy μ ( σ ) μ ( τ ) {\displaystyle \mu (\sigma )\leq \mu (\tau )} is at most one.
  2. For any cell σ X {\displaystyle \sigma \in {\mathcal {X}}} , the number of cells τ X {\displaystyle \tau \in {\mathcal {X}}} containing σ {\displaystyle \sigma } in their boundary which satisfy μ ( σ ) μ ( τ ) {\displaystyle \mu (\sigma )\geq \mu (\tau )} is at most one.

It can be shown[8] that the cardinalities in the two conditions cannot both be one simultaneously for a fixed cell σ {\displaystyle \sigma } , provided that X {\displaystyle {\mathcal {X}}} is a regular CW complex. In this case, each cell σ X {\displaystyle \sigma \in {\mathcal {X}}} can be paired with at most one exceptional cell τ X {\displaystyle \tau \in {\mathcal {X}}} : either a boundary cell with larger μ {\displaystyle \mu } value, or a co-boundary cell with smaller μ {\displaystyle \mu } value. The cells which have no pairs, i.e., whose function values are strictly higher than their boundary cells and strictly lower than their co-boundary cells are called critical cells. Thus, a discrete Morse function partitions the CW complex into three distinct cell collections: X = A K Q {\displaystyle {\mathcal {X}}={\mathcal {A}}\sqcup {\mathcal {K}}\sqcup {\mathcal {Q}}} , where:

  1. A {\displaystyle {\mathcal {A}}} denotes the critical cells which are unpaired,
  2. K {\displaystyle {\mathcal {K}}} denotes cells which are paired with boundary cells, and
  3. Q {\displaystyle {\mathcal {Q}}} denotes cells which are paired with co-boundary cells.

By construction, there is a bijection of sets between k {\displaystyle k} -dimensional cells in K {\displaystyle {\mathcal {K}}} and the ( k 1 ) {\displaystyle (k-1)} -dimensional cells in Q {\displaystyle {\mathcal {Q}}} , which can be denoted by p k : K k Q k 1 {\displaystyle p^{k}\colon {\mathcal {K}}^{k}\to {\mathcal {Q}}^{k-1}} for each natural number k {\displaystyle k} . It is an additional technical requirement that for each K K k {\displaystyle K\in {\mathcal {K}}^{k}} , the degree of the attaching map from the boundary of K {\displaystyle K} to its paired cell p k ( K ) Q {\displaystyle p^{k}(K)\in {\mathcal {Q}}} is a unit in the underlying ring of X {\displaystyle {\mathcal {X}}} . For instance, over the integers Z {\displaystyle \mathbb {Z} } , the only allowed values are ± 1 {\displaystyle \pm 1} . This technical requirement is guaranteed, for instance, when one assumes that X {\displaystyle {\mathcal {X}}} is a regular CW complex over Z {\displaystyle \mathbb {Z} } .

The fundamental result of discrete Morse theory establishes that the CW complex X {\displaystyle {\mathcal {X}}} is isomorphic on the level of homology to a new complex A {\displaystyle {\mathcal {A}}} consisting of only the critical cells. The paired cells in K {\displaystyle {\mathcal {K}}} and Q {\displaystyle {\mathcal {Q}}} describe gradient paths between adjacent critical cells which can be used to obtain the boundary operator on A {\displaystyle {\mathcal {A}}} . Some details of this construction are provided in the next section.

The Morse complex

A gradient path is a sequence of paired cells

ρ = ( Q 1 , K 1 , Q 2 , K 2 , , Q M , K M ) {\displaystyle \rho =(Q_{1},K_{1},Q_{2},K_{2},\ldots ,Q_{M},K_{M})}

satisfying Q m = p ( K m ) {\displaystyle Q_{m}=p(K_{m})} and κ ( K m ,   Q m + 1 ) 0 {\displaystyle \kappa (K_{m},~Q_{m+1})\neq 0} . The index of this gradient path is defined to be the integer

ν ( ρ ) = m = 1 M 1 κ ( K m , Q m + 1 ) m = 1 M κ ( K m , Q m ) . {\displaystyle \nu (\rho )={\frac {\prod _{m=1}^{M-1}-\kappa (K_{m},Q_{m+1})}{\prod _{m=1}^{M}\kappa (K_{m},Q_{m})}}.}

The division here makes sense because the incidence between paired cells must be ± 1 {\displaystyle \pm 1} . Note that by construction, the values of the discrete Morse function μ {\displaystyle \mu } must decrease across ρ {\displaystyle \rho } . The path ρ {\displaystyle \rho } is said to connect two critical cells A , A A {\displaystyle A,A'\in {\mathcal {A}}} if κ ( A , Q 1 ) 0 κ ( K M , A ) {\displaystyle \kappa (A,Q_{1})\neq 0\neq \kappa (K_{M},A')} . This relationship may be expressed as A ρ A {\displaystyle A{\stackrel {\rho }{\to }}A'} . The multiplicity of this connection is defined to be the integer m ( ρ ) = κ ( A , Q 1 ) ν ( ρ ) κ ( K M , A ) {\displaystyle m(\rho )=\kappa (A,Q_{1})\cdot \nu (\rho )\cdot \kappa (K_{M},A')} . Finally, the Morse boundary operator on the critical cells A {\displaystyle {\mathcal {A}}} is defined by

Δ ( A ) = κ ( A , A ) + A ρ A m ( ρ ) A {\displaystyle \Delta (A)=\kappa (A,A')+\sum _{A{\stackrel {\rho }{\to }}A'}m(\rho )A'}

where the sum is taken over all gradient path connections from A {\displaystyle A} to A {\displaystyle A'} .

Basic Results

Many of the familiar results from continuous Morse theory apply in the discrete setting.

The Morse Inequalities

Let A {\displaystyle {\mathcal {A}}} be a Morse complex associated to the CW complex X {\displaystyle {\mathcal {X}}} . The number m q = | A q | {\displaystyle m_{q}=|{\mathcal {A}}_{q}|} of q {\displaystyle q} -cells in A {\displaystyle {\mathcal {A}}} is called the q {\displaystyle q} -th Morse number. Let β q {\displaystyle \beta _{q}} denote the q {\displaystyle q} -th Betti number of X {\displaystyle {\mathcal {X}}} . Then, for any N > 0 {\displaystyle N>0} , the following inequalities[9] hold

m N β N {\displaystyle m_{N}\geq \beta _{N}} , and
m N m N 1 + ± m 0 β N β N 1 + ± β 0 {\displaystyle m_{N}-m_{N-1}+\dots \pm m_{0}\geq \beta _{N}-\beta _{N-1}+\dots \pm \beta _{0}}

Moreover, the Euler characteristic χ ( X ) {\displaystyle \chi ({\mathcal {X}})} of X {\displaystyle {\mathcal {X}}} satisfies

χ ( X ) = m 0 m 1 + ± m dim X {\displaystyle \chi ({\mathcal {X}})=m_{0}-m_{1}+\dots \pm m_{\dim {\mathcal {X}}}}

Discrete Morse Homology and Homotopy Type

Let X {\displaystyle {\mathcal {X}}} be a regular CW complex with boundary operator {\displaystyle \partial } and a discrete Morse function μ : X R {\displaystyle \mu \colon {\mathcal {X}}\to \mathbb {R} } . Let A {\displaystyle {\mathcal {A}}} be the associated Morse complex with Morse boundary operator Δ {\displaystyle \Delta } . Then, there is an isomorphism[10] of homology groups

H ( X , ) H ( A , Δ ) , {\displaystyle H_{*}({\mathcal {X}},\partial )\simeq H_{*}({\mathcal {A}},\Delta ),}

and similarly for the homotopy groups.

Applications

Discrete Morse theory finds its application in molecular shape analysis,[11] skeletonization of digital images/volumes,[12] graph reconstruction from noisy data,[13] denoising noisy point clouds[14] and analysing lithic tools in archaeology.[15]

See also

References

  1. ^ Mori, Francesca; Salvetti, Mario (2011), "(Discrete) Morse theory for Configuration spaces" (PDF), Mathematical Research Letters, 18 (1): 39–57, doi:10.4310/MRL.2011.v18.n1.a4, MR 2770581
  2. ^ Perseus: the Persistent Homology software.
  3. ^ Mischaikow, Konstantin; Nanda, Vidit (2013). "Morse Theory for Filtrations and Efficient computation of Persistent Homology". Discrete & Computational Geometry. 50 (2): 330–353. doi:10.1007/s00454-013-9529-6.
  4. ^ Bauer, Ulrich; Lange, Carsten; Wardetzky, Max (2012). "Optimal Topological Simplification of Discrete Functions on Surfaces". Discrete & Computational Geometry. 47 (2): 347–377. arXiv:1001.1269. doi:10.1007/s00454-011-9350-z.
  5. ^ Lewiner, T.; Lopes, H.; Tavares, G. (2004). "Applications of Forman's discrete Morse theory to topology visualization and mesh compression" (PDF). IEEE Transactions on Visualization and Computer Graphics. 10 (5): 499–508. doi:10.1109/TVCG.2004.18. PMID 15794132. S2CID 2185198. Archived from the original (PDF) on 2012-04-26.
  6. ^ "the Topology ToolKit". GitHub.io.
  7. ^ Mischaikow, Konstantin; Nanda, Vidit (2013). "Morse Theory for Filtrations and Efficient computation of Persistent Homology". Discrete & Computational Geometry. 50 (2): 330–353. doi:10.1007/s00454-013-9529-6.
  8. ^ Forman 1998, Lemma 2.5
  9. ^ Forman 1998, Corollaries 3.5 and 3.6
  10. ^ Forman 1998, Theorem 7.3
  11. ^ Cazals, F.; Chazal, F.; Lewiner, T. (2003). "Molecular shape analysis based upon the morse-smale complex and the connolly function". Proceedings of the nineteenth annual symposium on Computational geometry. ACM Press. pp. 351–360. doi:10.1145/777792.777845. ISBN 978-1-58113-663-0. S2CID 1570976.
  12. ^ Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian (March 2015). "Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory". IEEE Transactions on Pattern Analysis and Machine Intelligence. 37 (3): 654–666. doi:10.1109/TPAMI.2014.2346172. hdl:1885/12873. ISSN 1939-3539. PMID 26353267. S2CID 7406197.
  13. ^ Dey, Tamal K.; Wang, Jiayuan; Wang, Yusu (2018). Speckmann, Bettina; Tóth, Csaba D. (eds.). Graph Reconstruction by Discrete Morse Theory. 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs). Vol. 99. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. pp. 31:1–31:15. doi:10.4230/LIPIcs.SoCG.2018.31. ISBN 978-3-95977-066-8. S2CID 3994099.
  14. ^ Mukherjee, Soham (2021-09-01). "Denoising with discrete Morse theory". The Visual Computer. 37 (9): 2883–94. doi:10.1007/s00371-021-02255-7. S2CID 237426675.
  15. ^ Bullenkamp, Jan Philipp; Linsel, Florian; Mara, Hubert (2022), "Lithic Feature Identification in 3D based on Discrete Morse Theory", Proceedings of Eurographics Workshop on Graphics and Cultural Heritage (GCH), Delft, Netherlands: Eurographics Association, pp. 55–58, doi:10.2312/VAST/VAST10/131-138, ISBN 9783038681786, ISSN 2312-6124, S2CID 17294591, retrieved 2022-10-05
  • Forman, Robin (1998). "Morse theory for cell complexes" (PDF). Advances in Mathematics. 134 (1): 90–145. doi:10.1006/aima.1997.1650.
  • Forman, Robin (2002). "A user's guide to discrete Morse theory" (PDF). Séminaire Lotharingien de Combinatoire. 48: Art. B48c, 35 pp. MR 1939695.
  • Kozlov, Dmitry (2007). Combinatorial algebraic topology. Algorithms and Computation in Mathematics. Vol. 21. Springer. ISBN 978-3540719618. MR 2361455.
  • Jonsson, Jakob (2007). Simplicial complexes of graphs. Springer. ISBN 978-3540758587.
  • Orlik, Peter; Welker, Volkmar (2007). Algebraic Combinatorics: Lectures at a Summer School In Nordfjordeid. Universitext. Springer. doi:10.1007/978-3-540-68376-6. ISBN 978-3540683759. MR 2322081.
  • "Discrete Morse theory". nLab.