Rule of mixtures

Relation between properties and composition of a compound
The upper and lower bounds on the elastic modulus of a composite material, as predicted by the rule of mixtures. The actual elastic modulus lies between the curves.

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material .[1][2][3] It provides a theoretical upper- and lower-bound on properties such as the elastic modulus, ultimate tensile strength, thermal conductivity, and electrical conductivity.[3] In general there are two models, one for axial loading (Voigt model),[2][4] and one for transverse loading (Reuss model).[2][5]

In general, for some material property E {\displaystyle E} (often the elastic modulus[1]), the rule of mixtures states that the overall property in the direction parallel to the fibers may be as high as

E c = f E f + ( 1 f ) E m {\displaystyle E_{c}=fE_{f}+\left(1-f\right)E_{m}}

where

  • f = V f V f + V m {\displaystyle f={\frac {V_{f}}{V_{f}+V_{m}}}} is the volume fraction of the fibers
  • E f {\displaystyle E_{f}} is the material property of the fibers
  • E m {\displaystyle E_{m}} is the material property of the matrix

In the case of the elastic modulus, this is known as the upper-bound modulus, and corresponds to loading parallel to the fibers. The inverse rule of mixtures states that in the direction perpendicular to the fibers, the elastic modulus of a composite can be as low as

E c = ( f E f + 1 f E m ) 1 . {\displaystyle E_{c}=\left({\frac {f}{E_{f}}}+{\frac {1-f}{E_{m}}}\right)^{-1}.}

If the property under study is the elastic modulus, this quantity is called the lower-bound modulus, and corresponds to a transverse loading.[2]

Derivation for elastic modulus

Voigt Modulus

Consider a composite material under uniaxial tension σ {\displaystyle \sigma _{\infty }} . If the material is to stay intact, the strain of the fibers, ϵ f {\displaystyle \epsilon _{f}} must equal the strain of the matrix, ϵ m {\displaystyle \epsilon _{m}} . Hooke's law for uniaxial tension hence gives

σ f E f = ϵ f = ϵ m = σ m E m {\displaystyle {\frac {\sigma _{f}}{E_{f}}}=\epsilon _{f}=\epsilon _{m}={\frac {\sigma _{m}}{E_{m}}}} (1)

where σ f {\displaystyle \sigma _{f}} , E f {\displaystyle E_{f}} , σ m {\displaystyle \sigma _{m}} , E m {\displaystyle E_{m}} are the stress and elastic modulus of the fibers and the matrix, respectively. Noting stress to be a force per unit area, a force balance gives that

σ = f σ f + ( 1 f ) σ m {\displaystyle \sigma _{\infty }=f\sigma _{f}+\left(1-f\right)\sigma _{m}} (2)

where f {\displaystyle f} is the volume fraction of the fibers in the composite (and 1 f {\displaystyle 1-f} is the volume fraction of the matrix).

If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law σ = E c ϵ c {\displaystyle \sigma _{\infty }=E_{c}\epsilon _{c}} for some elastic modulus of the composite E c {\displaystyle E_{c}} and some strain of the composite ϵ c {\displaystyle \epsilon _{c}} , then equations 1 and 2 can be combined to give

E c ϵ c = f E f ϵ f + ( 1 f ) E m ϵ m . {\displaystyle E_{c}\epsilon _{c}=fE_{f}\epsilon _{f}+\left(1-f\right)E_{m}\epsilon _{m}.}

Finally, since ϵ c = ϵ f = ϵ m {\displaystyle \epsilon _{c}=\epsilon _{f}=\epsilon _{m}} , the overall elastic modulus of the composite can be expressed as[6]

E c = f E f + ( 1 f ) E m . {\displaystyle E_{c}=fE_{f}+\left(1-f\right)E_{m}.}

Reuss modulus

Now let the composite material be loaded perpendicular to the fibers, assuming that σ = σ f = σ m {\displaystyle \sigma _{\infty }=\sigma _{f}=\sigma _{m}} . The overall strain in the composite is distributed between the materials such that

ϵ c = f ϵ f + ( 1 f ) ϵ m . {\displaystyle \epsilon _{c}=f\epsilon _{f}+\left(1-f\right)\epsilon _{m}.}

The overall modulus in the material is then given by

E c = σ ϵ c = σ f f ϵ f + ( 1 f ) ϵ m = ( f E f + 1 f E m ) 1 {\displaystyle E_{c}={\frac {\sigma _{\infty }}{\epsilon _{c}}}={\frac {\sigma _{f}}{f\epsilon _{f}+\left(1-f\right)\epsilon _{m}}}=\left({\frac {f}{E_{f}}}+{\frac {1-f}{E_{m}}}\right)^{-1}}

since σ f = E ϵ f {\displaystyle \sigma _{f}=E\epsilon _{f}} , σ m = E ϵ m {\displaystyle \sigma _{m}=E\epsilon _{m}} .[6]

Other properties

Similar derivations give the rules of mixtures for

  • mass density:
    ρ c = ρ f f + ρ M ( 1 f ) {\displaystyle \rho _{c}=\rho _{f}\centerdot f+\rho _{M}\centerdot (1-f)}
    where f is the atomic percent of fiber in the mixture.
  • ultimate tensile strength:
    ( f σ U T S , f + 1 f σ U T S , m ) 1 σ U T S , c f σ U T S , f + ( 1 f ) σ U T S , m {\displaystyle \left({\frac {f}{\sigma _{UTS,f}}}+{\frac {1-f}{\sigma _{UTS,m}}}\right)^{-1}\leq \sigma _{UTS,c}\leq f\sigma _{UTS,f}+\left(1-f\right)\sigma _{UTS,m}}
  • thermal conductivity:
    ( f k f + 1 f k m ) 1 k c f k f + ( 1 f ) k m {\displaystyle \left({\frac {f}{k_{f}}}+{\frac {1-f}{k_{m}}}\right)^{-1}\leq k_{c}\leq fk_{f}+\left(1-f\right)k_{m}}
  • electrical conductivity:
    ( f σ f + 1 f σ m ) 1 σ c f σ f + ( 1 f ) σ m {\displaystyle \left({\frac {f}{\sigma _{f}}}+{\frac {1-f}{\sigma _{m}}}\right)^{-1}\leq \sigma _{c}\leq f\sigma _{f}+\left(1-f\right)\sigma _{m}}

See also

When considering the empirical correlation of some physical properties and the chemical composition of compounds, other relationships, rules, or laws, also closely resembles the rule of mixtures:

  • Amagat's law – Law of partial volumes of gases
  • Gladstone–Dale equation – Optical analysis of liquids, glasses and crystals
  • Kopp's law – Uses mass fraction
  • Kopp–Neumann law – Specific heat for alloys
  • Richmann's law – Law for the mixing temperature
  • Vegard's law – Crystal lattice parameters

References

  1. ^ a b Alger, Mark. S. M. (1997). Polymer Science Dictionary (2nd ed.). Springer Publishing. ISBN 0412608707.
  2. ^ a b c d "Stiffness of long fibre composites". University of Cambridge. Retrieved 1 January 2013.
  3. ^ a b Askeland, Donald R.; Fulay, Pradeep P.; Wright, Wendelin J. (2010-06-21). The Science and Engineering of Materials (6th ed.). Cengage Learning. ISBN 9780495296027.
  4. ^ Voigt, W. (1889). "Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper". Annalen der Physik. 274 (12): 573–587. Bibcode:1889AnP...274..573V. doi:10.1002/andp.18892741206.
  5. ^ Reuss, A. (1929). "Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle". Zeitschrift für Angewandte Mathematik und Mechanik. 9 (1): 49–58. Bibcode:1929ZaMM....9...49R. doi:10.1002/zamm.19290090104.
  6. ^ a b "Derivation of the rule of mixtures and inverse rule of mixtures". University of Cambridge. Retrieved 1 January 2013.

External links

  • Rule of mixtures calculator