Rushbrooke inequality

In statistical mechanics, the Rushbrooke inequality relates the critical exponents of a magnetic system which exhibits a first-order phase transition in the thermodynamic limit for non-zero temperature T.

Since the Helmholtz free energy is extensive, the normalization to free energy per site is given as

f = k T lim N 1 N log Z N {\displaystyle f=-kT\lim _{N\rightarrow \infty }{\frac {1}{N}}\log Z_{N}}

The magnetization M per site in the thermodynamic limit, depending on the external magnetic field H and temperature T is given by

M ( T , H )   = d e f   lim N 1 N ( i σ i ) {\displaystyle M(T,H)\ {\stackrel {\mathrm {def} }{=}}\ \lim _{N\rightarrow \infty }{\frac {1}{N}}\left(\sum _{i}\sigma _{i}\right)}

where σ i {\displaystyle \sigma _{i}} is the spin at the i-th site, and the magnetic susceptibility and specific heat at constant temperature and field are given by, respectively

χ T ( T , H ) = ( M H ) T {\displaystyle \chi _{T}(T,H)=\left({\frac {\partial M}{\partial H}}\right)_{T}}

and

c H = T ( S T ) H . {\displaystyle c_{H}=T\left({\frac {\partial S}{\partial T}}\right)_{H}.}

Additionally,

c M = + T ( S T ) M . {\displaystyle c_{M}=+T\left({\frac {\partial S}{\partial T}}\right)_{M}.}

Definitions

The critical exponents α , α , β , γ , γ {\displaystyle \alpha ,\alpha ',\beta ,\gamma ,\gamma '} and δ {\displaystyle \delta } are defined in terms of the behaviour of the order parameters and response functions near the critical point as follows

M ( t , 0 ) ( t ) β  for  t 0 {\displaystyle M(t,0)\simeq (-t)^{\beta }{\mbox{ for }}t\uparrow 0}


M ( 0 , H ) | H | 1 / δ sign ( H )  for  H 0 {\displaystyle M(0,H)\simeq |H|^{1/\delta }\operatorname {sign} (H){\mbox{ for }}H\rightarrow 0}


χ T ( t , 0 ) { ( t ) γ , for   t 0 ( t ) γ , for   t 0 {\displaystyle \chi _{T}(t,0)\simeq {\begin{cases}(t)^{-\gamma },&{\textrm {for}}\ t\downarrow 0\\(-t)^{-\gamma '},&{\textrm {for}}\ t\uparrow 0\end{cases}}}


c H ( t , 0 ) { ( t ) α for   t 0 ( t ) α for   t 0 {\displaystyle c_{H}(t,0)\simeq {\begin{cases}(t)^{-\alpha }&{\textrm {for}}\ t\downarrow 0\\(-t)^{-\alpha '}&{\textrm {for}}\ t\uparrow 0\end{cases}}}

where

t   = d e f   T T c T c {\displaystyle t\ {\stackrel {\mathrm {def} }{=}}\ {\frac {T-T_{c}}{T_{c}}}}

measures the temperature relative to the critical point.

Derivation

Using the magnetic analogue of the Maxwell relations for the response functions, the relation

χ T ( c H c M ) = T ( M T ) H 2 {\displaystyle \chi _{T}(c_{H}-c_{M})=T\left({\frac {\partial M}{\partial T}}\right)_{H}^{2}}

follows, and with thermodynamic stability requiring that c H , c M  and  χ T 0 {\displaystyle c_{H},c_{M}{\mbox{ and }}\chi _{T}\geq 0} , one has

c H T χ T ( M T ) H 2 {\displaystyle c_{H}\geq {\frac {T}{\chi _{T}}}\left({\frac {\partial M}{\partial T}}\right)_{H}^{2}}

which, under the conditions H = 0 , t > 0 {\displaystyle H=0,t>0} and the definition of the critical exponents gives

( t ) α c o n s t a n t ( t ) γ ( t ) 2 ( β 1 ) {\displaystyle (-t)^{-\alpha '}\geq \mathrm {constant} \cdot (-t)^{\gamma '}(-t)^{2(\beta -1)}}

which gives the Rushbrooke inequality

α + 2 β + γ 2. {\displaystyle \alpha '+2\beta +\gamma '\geq 2.}

Remarkably, in experiment and in exactly solved models, the inequality actually holds as an equality.