Nelinearna optika

Struktura KTP kristala, gledana duž b ose, koja se koristi u generaciji sekundarnih harmonika.

Nelinearna optika (NLO) je grana optike koja opisuje ponašanje svetlosti u nelinearnim medijima, to jest, medijima u kojima gustina polarizacije P nelinearno reaguje na električno polje E svetlosti. Nelinearnost se tipično uočava samo pri veoma visokom intenzitetu svetlosti (vrednostima atomskog električnog polja, tipično 108 V/m), kao što su one koje daju laseri. Iznad Švingerovog limita, očekuje se da sam vakuum postane nelinearan. U nelinearnoj optici princip superpozicije više ne važi.[1][2][3]

Istorija

Prvi nelinearni optički efekat koji je bio predviđen bila je dvoprotonska apsorpcija, prema nalazima opisanim u doktorskoj disertaciji Marije Gepert Majer iz 1931. godine, koja je ostala neistražena kao teorijska zanimljivost do 1961. godine, i gotovo istovremeno opažanje apsorpcije dva fotona u Belovim laboratorijama[4] i otkriće druge harmonične generacije Petera Frankena i drugih na Univerzitetu u Mičigenu. Do ovih otrkića je došlo ubrzo nakon konstrukcije prvog lasera zaslugom Teodora Mejmana.[5] Neki od nelinearnih efekata su otkriveni i pre razvoja lasera.[6] Teorijska osnova mnogih nelinearnih procesa prvi put je opisana u Blumbergenovoj monografiji „Nelinearna optika”.[7]

Teorija

Parametarski i „trenutni” nelinearni optički fenomeni (tj. materijal mora biti bez gubitaka i disperzije kroz Kramers-Kronigove relacije), u kojima optička polja nisu prevelika, mogu se opisati ekspanzijom Tejlorove serije dielektrične polarizacione gustine (električni dipolni momenat po jedinici zapremine) P(t) u trenutku t u smislu električnog polja E(t):

P ( t ) = ε 0 ( χ ( 1 ) E ( t ) + χ ( 2 ) E 2 ( t ) + χ ( 3 ) E 3 ( t ) + ) , {\displaystyle \mathbf {P} (t)=\varepsilon _{0}(\chi ^{(1)}\mathbf {E} (t)+\chi ^{(2)}\mathbf {E} ^{2}(t)+\chi ^{(3)}\mathbf {E} ^{3}(t)+\ldots ),}

gde su χ(n) koeficijenti susceptibilnosti medijuma n-tog reda, a prisustvo takvog člana se generalno naziva nelinearnošću n-tog reda. Treba imati na umu da se polarizaciona gustina P(t) i električno polje E(t) smatraju skalarima radi jednostavnosti. Uopšte rečeno, χ(n) je tenzor (n + 1)-tog ranga koji predstavlja polarizaciono-zavisnu prirodu parametarske interakcije i simetrije (ili nedostatak) nelinearnog materijala.

Talasna jednačina u nelearnom materijalu

Centralni pojam u istraživanju elektromagnetnih talasa je talasna jednačina. Polazeći od Maksvelovih jednačina u izotropnom prostoru, koji ne sadrži slobodna naelektrisanja, može se pokazati da je

× × E + n 2 c 2 2 t 2 E = 1 ε 0 c 2 2 t 2 P NL , {\displaystyle \nabla \times \nabla \times \mathbf {E} +{\frac {n^{2}}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\mathbf {E} =-{\frac {1}{\varepsilon _{0}c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\mathbf {P} ^{\text{NL}},}

gde je PNL nelinearni deo polarizacione gustine, a n je refraktivni indeks, koji dolazi od linearnog člana u P.

Normalno se može koristiti vektorski indentitet

× ( × V ) = ( V ) 2 V {\displaystyle \nabla \times \left(\nabla \times \mathbf {V} \right)=\nabla \left(\nabla \cdot \mathbf {V} \right)-\nabla ^{2}\mathbf {V} }

i Gausov zakon (pretpostavljajući da nema slobodnih naelektrisanja, ρ free = 0 {\displaystyle \rho _{\text{free}}=0} ),

D = 0 , {\displaystyle \nabla \cdot \mathbf {D} =0,}

da bi se dobila šire poznata talasna jednačina

2 E n 2 c 2 2 t 2 E = 0. {\displaystyle \nabla ^{2}\mathbf {E} -{\frac {n^{2}}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\mathbf {E} =0.}

Za nelinearni medijum, Gausov zakon ne podrazumeva da identitet

E = 0 {\displaystyle \nabla \cdot \mathbf {E} =0}

generalno važi, čak ni za izotropni medijum. Međutim, čak i kada ovaj izraz nije identičan 0, često je zanemarivo mali, te se u praksi obično zanemaruje, čime se dolazi do standardne nelinearne talasne jednačine:

2 E n 2 c 2 2 t 2 E = 1 ε 0 c 2 2 t 2 P NL . {\displaystyle \nabla ^{2}\mathbf {E} -{\frac {n^{2}}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\mathbf {E} ={\frac {1}{\varepsilon _{0}c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\mathbf {P} ^{\text{NL}}.}

Nelinearno formiranje optičkog uzorka

Optička polja koja se prenose preko nelinearnih Kerovih medija takođe mogu ispoljiti formiranje obrazaca zahvaljujući nelinearnom mediju koji pojačava prostorni i vremenski šum. Taj efekat se naziva nestabilnošću optičke modulacije.[8] Ovo je primećeno i kod fotorefraktivnih,[9] fotonskih rešetki,[10] kao i kod foto-reaktivnih sistema.[11][12][13][14] U poslednjem slučaju, optička nelinearnost se postiže reakciono indukovanim povećanjem refraktivnog indeksa.[15]

Molekularna nelinearna optika

Rane studije nelinearne optike i materijala fokusirale su se na neorganske čvrste materije. Razvojem nelinearne optike, ispitivana su molekularna optička svojstva, čime je formirana molekularna nelinearna optika.[16] Tradicionalni pristupi koji su se koristili u prošlosti za poboljšanje nelinearnosti uključuju produženja hromoforskih π-sistema, prilagođavanje alternacije dužine veze, indukovanje intramolekularnog prenosa naboja, produženje konjugacije u 2D i inženjering multipolarne distribucije naboja. Nedavno su predloženi mnogi novi pravci za pojačanu nelinearnost i svetlosne manipulacije, uključujući upletene hromofore, kombinovanje bogate gustine stanja sa naizmeničnim vezama, mikroskopsko kaskadiranje nelinearnosti drugog reda, itd. Zbog istaknutih prednosti, molekularna nelinearna optika se široko koristi u polju biofotonike, uključujući bioimidžing,[17] fototerapije,[18] biodetekcije,[19] etc.

Reference

  1. ^ Boyd, Robert (2008). Nonlinear Optics (3rd изд.). Academic Press. ISBN 978-0-12-369470-6. 
  2. ^ Shen, Yuen-Ron (2002). The Principles of Nonlinear Optics. Wiley-Interscience. ISBN 978-0-471-43080-3. 
  3. ^ Agrawal, Govind (2006). Nonlinear Fiber Optics (4th изд.). Academic Press. ISBN 978-0-12-369516-1. 
  4. ^ Kaiser, W.; Garrett, C. G. B. (1961). „Two-Photon Excitation in CaF2:Eu2+”. Physical Review Letters. 7 (6): 229. Bibcode:1961PhRvL...7..229K. doi:10.1103/PhysRevLett.7.229. 
  5. ^ Rigamonti, Luca (april 2010). „Schiff base metal complexes for second order nonlinear optics” (PDF). La Chimica & l'Industria (3): 118—122. Архивирано из оригинала (PDF) 1. 1. 2016. г. Приступљено 21. 10. 2015. 
  6. ^ Lewis, Gilbert N.; Lipkin, David; Magel, Theodore T. (novembar 1941). „Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State”. Journal of the American Chemical Society (на језику: енглески). 63 (11): 3005—3018. doi:10.1021/ja01856a043. 
  7. ^ Bloembergen, Nicolaas (1965). Nonlinear Optics. ISBN 978-9810225995. 
  8. ^ Zakharov, V. E.; Ostrovsky, L. A. (15. 3. 2009). „Modulation instability: The beginning”. Physica D: Nonlinear Phenomena. 238 (5): 540—548. Bibcode:2009PhyD..238..540Z. doi:10.1016/j.physd.2008.12.002. 
  9. ^ Soljacic, Marin (1. 1. 2000). „Modulation Instability of Incoherent Beams in Noninstantaneous Nonlinear Media”. Physical Review Letters. 84 (3): 467—470. Bibcode:2000PhRvL..84..467S. PMID 11015940. doi:10.1103/PhysRevLett.84.467. 
  10. ^ Jablan, Marinko; Buljan, Hrvoje; Manela, Ofer; Bartal, Guy; Segev, Mordechai (16. 4. 2007). „Incoherent modulation instability in a nonlinear photonic lattice”. Optics Express (на језику: енглески). 15 (8): 4623—33. Bibcode:2007OExpr..15.4623J. ISSN 1094-4087. PMID 19532708. doi:10.1364/OE.15.004623. 
  11. ^ Burgess, Ian B.; Shimmell, Whitney E.; Saravanamuttu, Kalaichelvi (1. 4. 2007). „Spontaneous Pattern Formation Due to Modulation Instability of Incoherent White Light in a Photopolymerizable Medium”. Journal of the American Chemical Society. 129 (15): 4738—4746. ISSN 0002-7863. PMID 17378567. doi:10.1021/ja068967b. 
  12. ^ Basker, Dinesh K.; Brook, Michael A.; Saravanamuttu, Kalaichelvi (3. 9. 2015). „Spontaneous Emergence of Nonlinear Light Waves and Self-Inscribed Waveguide Microstructure during the Cationic Polymerization of Epoxides”. The Journal of Physical Chemistry C. 119 (35): 20606—20617. ISSN 1932-7447. doi:10.1021/acs.jpcc.5b07117. 
  13. ^ Biria, Saeid; Malley, Philip P. A.; Kahan, Tara F.; Hosein, Ian D. (3. 3. 2016). „Tunable Nonlinear Optical Pattern Formation and Microstructure in Cross-Linking Acrylate Systems during Free-Radical Polymerization”. The Journal of Physical Chemistry C. 120 (8): 4517—4528. ISSN 1932-7447. doi:10.1021/acs.jpcc.5b11377. 
  14. ^ Biria, Saeid; Malley, Phillip P. A.; Kahan, Tara F.; Hosein, Ian D. (15. 11. 2016). „Optical Autocatalysis Establishes Novel Spatial Dynamics in Phase Separation of Polymer Blends during Photocuring”. ACS Macro Letters. 5 (11): 1237—1241. doi:10.1021/acsmacrolett.6b00659. 
  15. ^ Kewitsch, Anthony S.; Yariv, Amnon (1. 1. 1996). „Self-focusing and self-trapping of optical beams upon photopolymerization” (PDF). Optics Letters (на језику: енглески). 21 (1): 24—6. Bibcode:1996OptL...21...24K. ISSN 1539-4794. PMID 19865292. doi:10.1364/OL.21.000024. Архивирано из оригинала (PDF) 20. 4. 2020. г. Приступљено 26. 8. 2019. 
  16. ^ Gu, Bobo; Zhao, Chujun; Baev, Alexander; Yong, Ken-Tye; Wen, Shuangchun; Prasad, Paras N. (2016). „Molecular nonlinear optics: recent advances and applications”. Advances in Optics and Photonics. 8 (2): 328. Bibcode:2016AdOP....8..328G. doi:10.1364/AOP.8.000328. 
  17. ^ Kuzmin, Andrey N. (2016). „Resonance Raman probes for organelle-specific labeling in live cells”. Scientific Reports. 6: 28483. Bibcode:2016NatSR...628483K. PMC 4919686 Слободан приступ. PMID 27339882. doi:10.1038/srep28483. 
  18. ^ Gu, Bobo; Wu, Wenbo; Xu, Gaixia; Feng, Guangxue; Yin, Feng; Chong, Peter Han Joo; Qu, Junle; Yong, Ken-Tye; Liu, Bin (2017). „Precise Two‐Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation‐Induced Emission Characteristics”. Advanced Materials. 29 (28): 1701076. PMID 28556297. doi:10.1002/adma.201701076. 
  19. ^ Yuan, Yufeng; Lin, Yining; Gu, Bobo; Panwar, Nishtha; Tjin, Swee Chuan; Song, Jun; Qu, Junle; Yong, Ken-Tye (2017). „Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives”. Coordination Chemistry Reviews. 339: 138. doi:10.1016/j.ccr.2017.03.013. 

Literatura

  • Chen, Szu-yuan; Maksimchuk, Anatoly; Umstadter, Donald (17. 12. 1998). „Experimental observation of relativistic nonlinear Thomson scattering”. Nature. 396 (6712): 653—655. Bibcode:1998Natur.396..653C. arXiv:physics/9810036 Слободан приступ. doi:10.1038/25303. 
  • Bula, C.; McDonald, K. T.; Prebys, E. J.; Bamber, C.; Boege, S.; Kotseroglou, T.; Melissinos, A. C.; Meyerhofer, D. D.; Ragg, W.; Burke, D. L.; Field, R. C.; Horton-Smith, G.; Odian, A. C.; Spencer, J. E.; Walz, D.; Berridge, S. C.; Bugg, W. M.; Shmakov, K.; Weidemann, A. W. (22. 4. 1996). „Observation of Nonlinear Effects in Compton Scattering”. Phys. Rev. Lett. (Submitted manuscript). 76 (17): 3116—3119. Bibcode:1996PhRvL..76.3116B. PMID 10060879. doi:10.1103/PhysRevLett.76.3116. Архивирано из оригинала 21. 6. 2019. г. Приступљено 6. 9. 2018. 
  • James Koga; Timur Zh. Esirkepov; Sergei V. Bulanov. „Nonlinear Thomson scattering in the strong radiation damping regime”. American Institute of Physics. Архивирано из оригинала 18. 7. 2012. г. Приступљено 4. 7. 2010. 
  • Thaury, C.; Quéré, F.; Geindre, J.-P.; Levy, A.; Ceccotti, T.; Monot, P.; Bougeard, M.; Réau, F.; d’Oliveira, P.; Audebert, P.; Marjoribanks, R.; Martin, Ph (1. 6. 2007). „Plasma mirrors for ultrahigh-intensity optics”. Nat Phys. 3 (6): 424—429. Bibcode:2007NatPh...3..424T. doi:10.1038/nphys595. 
  • A. P. Kouzov, N. I. Egorova, M. Chrysos, F. Rachet, Non-linear optical channels of the polarizability induction in a pair of interacting molecules, NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2012, 3 (2)
  • Paschotta, Rüdiger. „Parametric Nonlinearities”. Encyclopedia of Laser Physics and Technology. 

Spoljašnje veze

Nelinearna optika na Vikimedijinoj ostavi.
  • Encyclopedia of laser physics and technology, with content on nonlinear optics, by Rüdiger Paschotta
  • An Intuitive Explanation of Phase Conjugation
  • SNLO - Nonlinear Optics Design Software
  • Robert Boyd plenary presentation: Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World SPIE Newsroom
Normativna kontrola: Državne Уреди на Википодацима
  • Francuska
  • BnF podaci
  • Nemačka
  • Izrael
  • Sjedinjene Države
  • Japan
  • Češka